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Abstract—Hyperparameter tuning is crucial for enhancing 

the performance of machine learning models, yet it remains a 

challenging task due to the vast search space. This research 

explores the use of Uniform Cost Search (UCS) for 

hyperparameter tuning, systematically prioritizing parameter 

configurations based on their potential to improve model 

performance. UCS is applied to a dataset to find the optimal 

hyperparameters and the results are compared with those 

obtained using RandomizedSearchCV. Through a series of 

structured experiments, this study evaluates the effectiveness of 

UCS in navigating the hyperparameter space efficiently. The 

findings provide insights into the advantages and potential of 

UCS as a strategic tool for hyperparameter optimization in 

machine learning. 
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I.  INTRODUCTION  

 Hyperparameter tuning is the process of selecting the best 
set of hyperparameters for a machine learning model to 
optimize its performance. Unlike model parameters, which are 
learned during the training process, hyperparameters are set 
prior to training and can significantly influence the behavior 
and accuracy of the model. These include settings such as 
learning rate, number of trees in a random forest, or the 
regularization strength in a regression model. Effective 
hyperparameter tuning involves systematically searching 
through a predefined space of hyperparameter values to 
identify the combination that yields the best performance on a 
validation dataset. 

 For regression models, common hyperparameters include 
the regularization strength, learning rate (for gradient descent-
based methods), and the number of features to consider. For 
decision trees and ensemble methods like random forests and 
gradient boosting, key hyperparameters include the maximum 
depth of the tree, the number of trees in the ensemble, the 
minimum number of samples required to split a node, the 
learning rate (for boosting algorithms), and the subsample ratio 
of the training instances. Additionally, parameters like the 
maximum number of features considered for splitting and the 
regularization term to prevent overfitting are crucial for these 
models. These hyperparameters must be carefully tuned to 
balance model complexity and performance, ensuring the 
model generalizes well to new data. 

 The process of finding these parameters involves 
systematic exploration of the hyperparameter space. 
Traditional methods include grid search and random search, 
which systematically or randomly sample the parameter space. 
However, Uniform Cost Search (UCS) is also a powerful 
method for hyperparameter tuning. UCS uses a cost-based 
approach to prioritize parameter configurations, allowing it to 
efficiently explore the most promising areas of the 
hyperparameter space. By assigning costs inversely related to 
model performance, UCS focuses on configurations that are 
likely to yield higher accuracy. This method not only 
streamlines the tuning process but also helps in avoiding 
overfitting by systematically evaluating and selecting the best 
parameter combinations. 

 In this paper, the writer present a meticulously cleaned and 
model-engineered dataset, which serves as the foundation for 
our hyperparameter tuning experiments using the XGBoost 
model. We employ Uniform Cost Search (UCS) to identify the 
optimal hyperparameters, leveraging its systematic cost-based 
approach to prioritize the most promising configurations. To 
assess the effectiveness of UCS, we compare its results with 
those obtained using RandomizedSearchCV. This comparison 
highlights the strengths and potential advantages of UCS in 
efficiently navigating the hyperparameter space and optimizing 
model performance. 

II. THEORETICAL BASIS 

A. Uniform Cost Search 

Uniform Cost Search (UCS) is a search algorithm that 
addresses the problem of finding the shortest path in a graph 
where the steps or edges have varying costs. Unlike Breadth-
First Search (BFS) and Iterative Deepening Search (IDS), 
which are designed to find the path with the fewest steps, UCS 
is tailored to find the path with the lowest cumulative cost, 
making it ideal when the number of steps does not correlate 
directly with the path cost. For instance, if the goal is to travel 
from point A to point B through various intermediate points 
(A-S-F-B), UCS ensures that the sum of the distances (or costs) 
along the path is minimized, rather than merely minimizing the 
number of steps. 
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Figure 1. UCS Illustration in Pathfinding 

(Source: [1]) 

To achieve this, UCS uses a priority queue where each 
node is prioritized based on the cumulative cost. By always 
expanding the node with the lowest g(n) value, UCS 
systematically explores paths in order of their cumulative cost, 
ensuring that the first time it reaches the goal node, it has found 
the shortest possible path in terms of total distance or cost. This 
makes UCS particularly relevant for problems where the cost 
of traveling between nodes varies, providing an optimal 
solution based on the sum of distances rather than the number 
of steps. In Uniform Cost Search (UCS), the function below is 
used to determine the priority of each node in the search 
process. 

f(n)  =  g(n) 

where g(n) is the cumulative cost from the start node to the 
current node n. In hyperparameter tuning scenario, this cost is 
effectively the negative of the model's accuracy score. The 
rationale behind using the negative accuracy score is to allow 
the priority queue to prioritize configurations that yield higher 
accuracies (since a higher accuracy would correspond to a 
lower negative value). 

 Although typically used for route finding, Uniform Cost 
Search (UCS) also works well for hyperparameter tuning in 
machine learning models. By prioritizing parameter 
configurations based on their performance (cost), UCS 
systematically explores the most promising settings first. This 
approach ensures that the search efficiently navigates the 
hyperparameter space, focusing on combinations that enhance 
model accuracy. 

 Uniform Cost Search (UCS) can operate in two modes: it 
can either stop after finding the first complete set of parameters 
with the lowest cost or continue searching to explore other 
potential solutions. In the first mode, UCS identifies and 
returns the optimal solution based on cumulative cost and halts 
further exploration, ensuring a quick resolution when the first 
good enough solution is acceptable. In the second mode, UCS 
continues to traverse the search space even after finding an 
initial solution, checking other nodes to ensure that no better 
solution exists. This exhaustive approach guarantees finding 
the globally optimal solution, though it may require more time. 
This dual capability allows UCS to balance between time 
efficiency and thoroughness, making it versatile for different 
optimization needs. 

 UCS does not typically continue searching after finding the 
optimal solution, as the algorithm inherently ensures that the 

first solution found is the optimal one due to its nature of 
expanding the least-cost node first. However, UCS can be 
modified to continue exploring the search space even after 
finding an initial solution to check for other potentially optimal 
solutions. 

 Although at first glance it might seem that modifying 
Uniform Cost Search (UCS) to continue searching after finding 
the first solution makes it similar to brute force, there are 
significant differences. UCS uses a priority queue to always 
expand the least-cost node first, ensuring that the search is 
more directed and efficient compared to the exhaustive 
enumeration of brute force. This prioritization allows UCS to 
systematically reduce the number of nodes it needs to explore, 
avoiding paths that are guaranteed to be more expensive than 
the current best path. While both methods will eventually 
consider all possible solutions, UCS retains its efficiency 
advantage by focusing on the most promising paths first. Thus, 
even with continued searching, UCS remains more efficient 
and targeted than a traditional brute force approach, 
highlighting its robustness in finding optimal solutions. 

B. Machine Learning 

Machine learning is a field of artificial intelligence that 

focuses on the development of algorithms and statistical 

models that enable computers to perform tasks without 

explicit instructions. Instead, these systems learn from data, 

identifying patterns and making decisions based on their 

learning. The theoretical basis of machine learning 

encompasses several core concepts, including: 

1. Supervised Learning 

This concepts involves training a model on a labeled 

dataset, meaning the data includes both input features 

and the corresponding target labels. The model learns 

to predict the output from the input data. Common 

techniques include linear regression, logistic 

regression, support vector machines, and neural 

networks. 

2. Unsupervised Learning 

This concepts involves training a model on data that 

does not have labeled responses. The goal is to find 

hidden patterns or intrinsic structures within the data. 

Techniques include clustering (e.g., k-means, 

hierarchical clustering) and dimensionality reduction 

(e.g., PCA, t-SNE). 

3. Reinforcement Learning 

This concepts involves training an agent to make a 

sequence of decisions by rewarding desired behaviors. 

The agent learns to achieve a goal in an uncertain, 

potentially complex environment. Techniques include 

Q-learning and policy gradient methods. 

4. Semi-Supervised Learning 

This concepts combines labeled and unlabeled data to 

improve learning accuracy. It leverages a small 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024 

 

amount of labeled data to better understand the 

structure of the unlabeled data. 

Data modeling in machine learning involves creating 

structured representations of data to develop predictive models 

that can provide valuable insights and make accurate 

predictions. The process begins with data preprocessing, 

where raw data is cleaned and transformed to make it suitable 

for modeling. This includes handling missing values, outliers, 

and inconsistencies, normalizing and scaling numerical 

features, and encoding categorical variables. The data is then 

split into training, validation, and test sets to ensure robust 

evaluation of the model’s performance. 

Feature selection and engineering are crucial steps that 

follow, where the most relevant features are identified and 

new features are created to enhance model performance. This 

may involve selecting variables that contribute significantly to 

the prediction task and creating interaction terms or 

polynomial features. Once the features are prepared, the next 

step is model selection and training. Various algorithms can be 

used depending on the nature of the problem and the data. 

Common models include linear regression, decision trees, 

random forests, support vector machines, and neural networks. 

The chosen model is trained on the training dataset by 

adjusting its parameters to minimize prediction errors. 

C. Hyperparameter Tuning 

Hyperparameters are external configurations to a model 
that must be set before training begins. Examples include the 
learning rate in gradient descent, the number of trees in a 
random forest, and the maximum depth of a decision tree. The 
choice of hyperparameters can affect the model’s convergence 
speed, its ability to generalize, and its overall performance. 
Proper tuning of these hyperparameters is essential because 
they control the complexity and capacity of the model, and 
thereby directly influence its predictive power and efficiency. 

Several traditional strategies exist for hyperparameter 
tuning, each with its own advantages and limitations: 

1. Grid Search: This method exhaustively searches 
through a manually specified subset of the 
hyperparameter space. Although simple and effective, 
grid search can be computationally expensive and 
time-consuming, especially with large datasets and 
complex models. 

2. Random Search: Instead of exhaustively searching all 
possible combinations, random search samples a fixed 
number of hyperparameter configurations from a 
defined search space. Research has shown that random 
search can be more efficient than grid search, often 
finding good hyperparameter configurations more 
quickly. 

3. Bayesian Optimization: This method uses probabilistic 
models to predict the performance of hyperparameters 
and select the most promising candidates for 
evaluation. It balances exploration and exploitation to 
efficiently navigate the hyperparameter space. 

4. Evolutionary Algorithms: These are population-based 
optimization algorithms inspired by natural selection. 
They iteratively evolve a population of candidate 
solutions using operations like mutation, crossover, 
and selection. 

5. Gradient-Based Optimization: Some advanced 
techniques use gradient information to optimize 
hyperparameters. These methods require differentiable 
hyperparameters and can be very efficient for certain 
types of models. 

 

Figure 2. Grid search and Random search illustration  

(Source : [3]) 

The performance of different hyperparameter 
configurations is typically evaluated using cross-validation on a 
validation set. Common metrics include accuracy, precision, 
recall, F1 score, and mean squared error, depending on the type 
of problem (classification or regression). The chosen metric 
guides the search process, helping to identify the best 
hyperparameter set. 

III. IMPLEMENTATION 

In this section, we will outline the process of preparing the 
scenario for our testing. We will begin by discussing the steps 
involved in cleaning and engineering the dataset to ensure it is 
suitable for hyperparameter tuning. Following this, we will 
delve into the implementation of Uniform Cost Search (UCS) 
for finding optimal hyperparameter configurations. Finally, we 
will compare the performance of UCS with 
RandomizedSearchCV to evaluate its effectiveness in 
hyperparameter optimization. 

A. Limitations 

In terms of limitations, there are several considerations to 

take into account regarding this research and its 

implementation. Firstly, accuracy might vary across test cases 

due to the use of the random shuffle splitting method, which 

can introduce variability in the results. Additionally, while the 

UCS method aims to find the set of parameters that yields the 

highest accuracy, tuning does not always guarantee better 
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results than using untuned parameters, as overtuning can 

occur. This research focuses on demonstrating that among 

various tuning methods, UCS can identify the highest 

accuracy configuration. 

Furthermore, only basic cleaning and preprocessing were 

applied to the data, which might have limited the achievable 

accuracy. Additional preprocessing steps and gaining deeper 

insights into the data could further enhance accuracy. Finally, 

while the UCS method accepts a range of variables and 

parameter values, the broader the range and the more variables 

included, the longer the search process will take. This 

research's implementation aims not only to find a complete 

parameter set but also to identify the optimal one, which can 

be time-consuming. 

B. Dataset 

The dataset used in this study contains detailed information 
on hotel bookings, comprising 94,546 rows and 30 columns. It 
provides a comprehensive overview of each booking, including 
the booking ID, average daily rate, number of adults, children, 
and babies, arrival details (day, month, week number, and 
year), room type assigned and reserved, booking changes, and 
customer type. Additionally, it includes data on waiting list 
duration, deposit type, distribution channel, country of origin, 
previous cancellations, parking space requirements, and the 
final reservation status. The purpose of this dataset is to 
provide information to determine whether a user has checked 
out or canceled their reservation. 

 

Figure 3. Snippet of Dataset 

(Source : Code written by the author) 

C. Data Preparation 

The first step of the preprocessing involves splitting the 

data into a training set and a validation set. The training set is 

used for model training, allowing the algorithm to learn from 

the data, while the validation set is reserved for evaluation, 

enabling the assessment of the model's performance on unseen 

data. 

 

Figure 4. Snippet of data shuffle splitter 

(Source : Code written by the author) 

Before moving to the pipeline, the dataset is cleaned of 

null and empty values to ensure data quality and consistency. 

However, the 'agents' and 'country' columns are retained 

despite containing a significant number of NaN values, as 

removing them at this stage would substantially reduce the 

size of the training data. These columns will be handled later 

in the pipeline, where rows containing NaN values in 'agents' 

and 'country' will be imputed altogether to ensure the integrity 

of the final dataset. 

 

Figure 5. Snippet of Data cleaning function 

(Source : Code written by the author) 

 
Figure 6. Snippet of data pipeline 

(Source : Code written by the author) 

No outlier cleaning was performed in this study due to the 

imbalanced and varied nature of the data, which could lead to 

excessive deletion when attempting to remove outliers. To 

maintain accuracy, it was decided to retain the outliers and 

address them by scaling later in the data processing pipeline. 

This approach ensures that valuable data points are not 

discarded, while still managing their impact on the model’s 

performance through subsequent scaling techniques. 

After clearing the trainset of the NaN values, a pipeline is 

constructed to process the data further. The pipeline includes 

several steps: 

1. FeatureImputer 

This step handles missing values in the dataset. The 

fills in or replaces missing data points, ensuring that 

the dataset is complete and can be used for training 

without issues related to incomplete data. 
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Figure 7. Snippet of FeatureImputer  

(Source : Code written by the author) 

2. FeatureScaler 

The steps standardizes the range of independent 

variables or features of data, which is crucial for many 

machine learning algorithms that are sensitive to the 

scale of data.  

 

Figure 8. Snippet of FeatureScaler 

(Source : Code written by the author) 

3. FeatureDropper 

This step removes columns that are not useful for the 

model training process, such as columns with too 

many missing values or irrelevant information. 

 

Figure 9. Snippet of FeatureDropper 

(Source : Code written by the author) 

4. FeatureEncoder. 

This step encodes categorical variables. It transforms 

categorical features into a format that can be provided 

to the machine learning algorithm to do a better job in 

prediction. 

 

Figure 10. Snippet of FeatureEncoder 

(Source : Code written by the author) 

D. Data Modelling 

After preprocessing the data to ensure it is suitable for 

modeling, the modeling process is divided into four distinct 

scenarios, all utilizing the XGBoost model. This approach 

allows for a comprehensive evaluation of different 

hyperparameter tuning methods on model performance. 

The first scenario involves using XGBoost with its default 

hyperparameters. This serves as a baseline model to 

understand the performance of XGBoost without any 

hyperparameter optimization. By evaluating the model in its 

default state, we can establish a reference point for 

comparison with the other tuned models. This baseline helps 

to highlight the impact of hyperparameter tuning on model 

performance. 

 

Figure 11. Snippet of pure XGBoost prediction 

(Source : Code written by the author) 

In the second scenario, XGBoost is employed with 

hyperparameters optimized using Uniform Cost Search (UCS). 

UCS is a best-first search algorithm that systematically 

explores the hyperparameter space by prioritizing 

configurations based on their potential to improve model 

performance. By assigning costs inversely related to predicted 

accuracy, UCS effectively identifies promising 

hyperparameter settings. This scenario aims to demonstrate 

the efficiency and effectiveness of UCS in navigating the 

hyperparameter space to find configurations that enhance 

model accuracy. 
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Figure 12. Snippet of UCS generated parameters and its 

XGBoost prediction 

(Source : Code written by the author) 

The algorithm begins by initializing an empty set for the 

best parameters (best_params) and setting the best score 

(best_score) to zero. It also initializes a priority queue to 

manage the exploration of parameter sets, where each item in 

the queue is a tuple containing the cost, a unique identifier, the 

current set of parameters, and the list of remaining parameter 

keys to explore. 

The algorithm enters a loop that continues until the queue 

is empty. In each iteration, it dequeues the parameter set with 

the lowest cost (highest accuracy). If there are no more 

parameters to explore (remaining_keys is empty), it compares 

the current score (negative of the cost) with the best score 

found so far. If the current score is higher, it updates the best 

parameters and best score. 

If there are still parameters to explore, the algorithm takes 

the next parameter key from the list (next_key) and iterates 

over all possible values for this key. For each value, it creates 

a new parameter set (new_params) by copying the current 

parameters and adding the new value for the key. It then 

evaluates this new parameter set using the evaluate_params 

function, which performs cross-validation to obtain an 

accuracy score. 

The new parameter set, along with its cost (negative 

accuracy score), unique identifier, and remaining keys to 

explore, is then added to the priority queue. The process 

continues until all possible parameter sets have been explored, 

and the queue is empty. The best set of parameters found 

during the search is returned. 

The UCS method initially finds the first complete set of 

parameters with the lowest cost and prints it out. However, it 

does not stop there; another modification ensures that it 

continues its exhaustive search while still applying the UCS 

concept, starting from other nodes. Every time a new node 

yields better results, it prints a statement indicating a change 

from the initial node path. This approach ensures that UCS 

applies both concepts: stopping at the first found parameters if 

time efficiency is preferred, or continuing to exhaustively 

search for optimal parameters if better performance is desired. 

This makes comparison with RandomizedSearchCV and 

GridSearchCV viable, as UCS can be evaluated for both time 

efficiency and optimality. 

The third scenario applies XGBoost with hyperparameters 

determined through RandomizedSearchCV (a sklearn model 

selection library). RandomizedSearchCV randomly samples a 

specified number of hyperparameter combinations from the 

defined parameter space and evaluates them. This approach 

can often find good hyperparameters more quickly than 

exhaustive grid search, making it a popular choice for 

hyperparameter tuning.  

 

Figure 13. Snippet of XGBoost prediction using 

RandomizedSearchCV parameters 

(Source : Code written by the author) 

The fourth scenario applies XGBoost with hyperparameters 

determined through GridSearchCV, a model selection library 

from scikit-learn. GridSearchCV performs an exhaustive 

search over a specified parameter grid, evaluating all possible 

combinations of the provided hyperparameters. This approach 

systematically explores the entire parameter space to identify 

the best combination of hyperparameters that maximizes 

model performance. 

 

Figure 14. Snippet of XGBoost prediction using 

GridSearchCV parameters 

(Source : Code written by the author) 

The purpose of the third and fourth scenarios is to evaluate 

whether UCS is effective for hyperparameter tuning. The third 

scenario uses RandomizedSearchCV, which prioritizes time 

efficiency by sampling a specified number of hyperparameter 

combinations. Therefore, UCS, with its longer search time, 

should at least achieve the same or better results as 

RandomizedSearchCV. The fourth scenario employs 

GridSearchCV, which performs an exhaustive search to find 

the optimal parameters. Hence, UCS should yield results that 
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are at least as good as, or very close to, those obtained by 

GridSearchCV. Meeting these benchmarks would demonstrate 

that UCS is a viable and effective method for hyperparameter 

tuning. 

IV. TESTING AND ANALYSIS 

The model-ready dataset was then passed through three 

different scenarios. In this test case, the parameters used were 

based on the features of XGBoost, which included the 

following parameter grid: 'n_estimators' with values [50, 100, 

150], 'max_depth' with values [3, 6, 9], 'learning_rate' with 

values [0.01, 0.1, 0.2], 'subsample' with values [0.7, 0.8, 1.0], 

and 'colsample_bytree' with values [0.7, 0.8, 0.9, 1.0]. 

 

Figure 15. Snippet of parameters used as test cases 

(Source : Code written by the author) 

The choice of model may vary according to its intended 

usage, as different models have distinct parameters and 

requirements. It's important to remember that each model type 

comes with its own set of parameters that need to be optimized 

to achieve the best performance. In this test case, XGBoost is 

used as the model due to its ability to handle large datasets 

efficiently, its robustness in managing both regression and 

classification tasks, and its superior performance through 

gradient boosting techniques. XGBoost's regularization 

capabilities also help prevent overfitting, making it an ideal 

choice for achieving high accuracy and reliability in 

predictions. 

The results of the three scenarios are then compared and 
evaluated together to gain additional insights and determine 
whether the search for the optimal parameters is returns a 
desirable results. 

 In this test case, with a dataset split of 60% for training and 
40% for testing, and using the XGBoost model without 
hyperparameter tuning, the resulting accuracy is 0.8229. 

 

Figure 16. Snippet of accuracy result using pure XGBoost 

(Source : Code written by the author) 

 This shows a satisfactory result, as accuracy ranges from 
70% to 90% are considered optimal when evaluating a model. 

However, another attempt will be made to further increase the 
accuracy by applying different sets of parameters.  

 

Figure 17. Snippet of accuracy result using XGBoost and 

UCS generated parameters 

(Source : Code written by the author) 

 When evaluating the model using UCS, the search process 
took approximately 14 minutes. Despite the longer search time, 
it resulted in a better accuracy score of 0.8282. During the 
search, the model evaluated one parameter sets before 
identifying the final set as the best one. The evaluation was 
performed using cross-validation scores, and once the optimal 
parameters were found, they were used to predict accuracy on 
the test set. 

 As shown above, the print statement is triggered whenever 
a better score is found, indicating that the UCS method has 
identified a new node that yields improved results. This 
demonstrates the effectiveness of UCS in continually refining 
the search for the optimal parameters by prioritizing nodes with 
higher potential. 

 Had the problem been solely to find the first solution 
while maintaining its optimality, the UCS code could be 
adjusted to stop after returning the first complete set of 
parameters and it will have a much shorter search time while 
still maintaining its high accuracy (Figure 17 shows it stands 
slightly below the best value). This initial set would be 
considered a good solution within the scope of the explored 
branches, even if it does not encompass the entire parameter 
set. This adjustment would allow for faster results while still 
ensuring the parameters are effective, though they might not be 
the absolute best across the whole parameter space. However, 
to be able to compete with traditional strategies, it is necessary 
to enhance its optimality to the fullest, even if it means 
increasing the search time. 

 Compared to the previous accuracy, we can conclude that 
UCS indeed returns parameters that boost the accuracy of the 
model. To test whether this improvement represents the upper 
bound ( the best result within the params range provided) , we 
will now compare it with the results from Randomized Cross-
Validation (RandomizedCV). RandomizedCV is known to 
yield diverse results due to its stochastic nature, potentially 
identifying different optimal parameters that could further 
enhance accuracy. 

 

Figure 18. Snippet of accuracy result using XGBoost and 

RandomizedCV parameters 

(Source : Code written by the author) 

 The RandomizedCV returned an accuracy value of 0.8259, 
which is higher than the untuned model but lower than the 
accuracy achieved by the UCS method. It is important to note 
that RandomizedCV focuses on balancing between time and 
results, indicating that our UCS method has proven to be 
effective in determining the optimal parameters for achieving 
the best results. 
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Figure 19. Snippet of accuracy result using XGBoost and 

GridSearchCV parameters 

(Source : Code written by the author) 

 The results above show that the accuracy and preferred 
parameters obtained using GridSearchCV are equal to those 
achieved with our UCS method. Since GridSearchCV employs 
an exhaustive approach to find the best solution, this parity in 
results demonstrates that our UCS method works effectively. It 
is important to note, however, that GridSearchCV might be 
faster due to its implementation as a library, which benefits 
from optimization techniques such as parallel processing. 
These built-in optimizations enable GridSearchCV to 
efficiently handle exhaustive searches, further validating the 
robustness and efficiency of our UCS approach in comparison. 

 The UCS method might provide better results than 
RandomizedCV because it focuses more on finding the optimal 
result rather than minimizing the time required. However, it 
still falls short compared to GridSearchCV, which, despite 
being an exhaustive search method, has its own optimization 
techniques. The purpose of demonstrating that the UCS method 
works is evident in how the program consistently selects nodes 
with higher priority, ensuring a thorough search for the best 
parameters. This approach has paid off, as shown by UCS 
outperforming RandomizedCV in terms of accuracy and have 
matching parameters and accuracy with GridSearchCV. 

V. CONCLUSION 

A key way to increase model accuracy is through 

hyperparameter tuning. Traditional methods of 

hyperparameter tuning include RandomizedCV and 

GridSearchCV, among others. However, in this research, the 

author challenged himself to apply the UCS method to find the 

best and most optimal parameters. This approach aims to test 

if the UCS method could be used as an effective way to 

provide optimal results, leveraging its systematic and 

prioritized search capabilities as an alternative to conventional 

hyperparameter tuning techniques. 

Uniform Cost Search (UCS) is conceptually advantageous 

due to its flexibility. It can maintain its true UCS nature by 

stopping at the first iteration once an optimal solution is found, 

ensuring efficiency while still achieving good results. 

Alternatively, it can compete with traditional exhaustive 

methods by continuing the search to explore additional 

solutions, all while maintaining a cost-minimization approach. 

This dual capability allows UCS to either prioritize speed or 

thoroughness, making it a robust and adaptable method for 

finding the best parameters. 

Based on testing and analysis, the UCS method has proven 

its effectiveness in finding the best parameters for 

hyperparameter tuning. This is evidenced by its ability to yield 

better results while maintaining its behavior of printing every 

time it finds nodes with better accuracy, ultimately achieving a 

higher score than RandomizedCV. Although UCS may seem 

inefficient compared to built-in traditional selection libraries 

like GridSearchCV, this paper demonstrates the fundamental 

concept of applying UCS as a method for identifying optimal 

parameters. With further optimization, UCS could potentially 

yield excellent results in a more efficient timeframe. 

VI. APPENDIX 

https://github.com/Razark-

Y/UCS_Approach_For_Hyperparameter_Tuning  

VIDEO LINK AT YOUTUBE  

https://www.youtube.com/watch?v=DzqWGiAI670  
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