
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Uniform Cost Search as a Strategy for

Hyperparameter Optimization

Wilson Yusda - 13522019

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13522019@std.stei.itb.ac.id

Abstract—Hyperparameter tuning is crucial for enhancing

the performance of machine learning models, yet it remains a

challenging task due to the vast search space. This research

explores the use of Uniform Cost Search (UCS) for

hyperparameter tuning, systematically prioritizing parameter

configurations based on their potential to improve model

performance. UCS is applied to a dataset to find the optimal

hyperparameters and the results are compared with those

obtained using RandomizedSearchCV. Through a series of

structured experiments, this study evaluates the effectiveness of

UCS in navigating the hyperparameter space efficiently. The

findings provide insights into the advantages and potential of

UCS as a strategic tool for hyperparameter optimization in

machine learning.

Keywords—Uniform Cost Search; Hyperparameter Tuning;

Machine Learning Optimization; Model Performance

I. INTRODUCTION

 Hyperparameter tuning is the process of selecting the best
set of hyperparameters for a machine learning model to
optimize its performance. Unlike model parameters, which are
learned during the training process, hyperparameters are set
prior to training and can significantly influence the behavior
and accuracy of the model. These include settings such as
learning rate, number of trees in a random forest, or the
regularization strength in a regression model. Effective
hyperparameter tuning involves systematically searching
through a predefined space of hyperparameter values to
identify the combination that yields the best performance on a
validation dataset.

 For regression models, common hyperparameters include
the regularization strength, learning rate (for gradient descent-
based methods), and the number of features to consider. For
decision trees and ensemble methods like random forests and
gradient boosting, key hyperparameters include the maximum
depth of the tree, the number of trees in the ensemble, the
minimum number of samples required to split a node, the
learning rate (for boosting algorithms), and the subsample ratio
of the training instances. Additionally, parameters like the
maximum number of features considered for splitting and the
regularization term to prevent overfitting are crucial for these
models. These hyperparameters must be carefully tuned to
balance model complexity and performance, ensuring the
model generalizes well to new data.

 The process of finding these parameters involves
systematic exploration of the hyperparameter space.
Traditional methods include grid search and random search,
which systematically or randomly sample the parameter space.
However, Uniform Cost Search (UCS) is also a powerful
method for hyperparameter tuning. UCS uses a cost-based
approach to prioritize parameter configurations, allowing it to
efficiently explore the most promising areas of the
hyperparameter space. By assigning costs inversely related to
model performance, UCS focuses on configurations that are
likely to yield higher accuracy. This method not only
streamlines the tuning process but also helps in avoiding
overfitting by systematically evaluating and selecting the best
parameter combinations.

 In this paper, the writer present a meticulously cleaned and
model-engineered dataset, which serves as the foundation for
our hyperparameter tuning experiments using the XGBoost
model. We employ Uniform Cost Search (UCS) to identify the
optimal hyperparameters, leveraging its systematic cost-based
approach to prioritize the most promising configurations. To
assess the effectiveness of UCS, we compare its results with
those obtained using RandomizedSearchCV. This comparison
highlights the strengths and potential advantages of UCS in
efficiently navigating the hyperparameter space and optimizing
model performance.

II. THEORETICAL BASIS

A. Uniform Cost Search

Uniform Cost Search (UCS) is a search algorithm that
addresses the problem of finding the shortest path in a graph
where the steps or edges have varying costs. Unlike Breadth-
First Search (BFS) and Iterative Deepening Search (IDS),
which are designed to find the path with the fewest steps, UCS
is tailored to find the path with the lowest cumulative cost,
making it ideal when the number of steps does not correlate
directly with the path cost. For instance, if the goal is to travel
from point A to point B through various intermediate points
(A-S-F-B), UCS ensures that the sum of the distances (or costs)
along the path is minimized, rather than merely minimizing the
number of steps.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 1. UCS Illustration in Pathfinding

(Source: [1])

To achieve this, UCS uses a priority queue where each
node is prioritized based on the cumulative cost. By always
expanding the node with the lowest g(n) value, UCS
systematically explores paths in order of their cumulative cost,
ensuring that the first time it reaches the goal node, it has found
the shortest possible path in terms of total distance or cost. This
makes UCS particularly relevant for problems where the cost
of traveling between nodes varies, providing an optimal
solution based on the sum of distances rather than the number
of steps. In Uniform Cost Search (UCS), the function below is
used to determine the priority of each node in the search
process.

f(n) = g(n)

where g(n) is the cumulative cost from the start node to the
current node n. In hyperparameter tuning scenario, this cost is
effectively the negative of the model's accuracy score. The
rationale behind using the negative accuracy score is to allow
the priority queue to prioritize configurations that yield higher
accuracies (since a higher accuracy would correspond to a
lower negative value).

 Although typically used for route finding, Uniform Cost
Search (UCS) also works well for hyperparameter tuning in
machine learning models. By prioritizing parameter
configurations based on their performance (cost), UCS
systematically explores the most promising settings first. This
approach ensures that the search efficiently navigates the
hyperparameter space, focusing on combinations that enhance
model accuracy.

 Uniform Cost Search (UCS) can operate in two modes: it
can either stop after finding the first complete set of parameters
with the lowest cost or continue searching to explore other
potential solutions. In the first mode, UCS identifies and
returns the optimal solution based on cumulative cost and halts
further exploration, ensuring a quick resolution when the first
good enough solution is acceptable. In the second mode, UCS
continues to traverse the search space even after finding an
initial solution, checking other nodes to ensure that no better
solution exists. This exhaustive approach guarantees finding
the globally optimal solution, though it may require more time.
This dual capability allows UCS to balance between time
efficiency and thoroughness, making it versatile for different
optimization needs.

 UCS does not typically continue searching after finding the
optimal solution, as the algorithm inherently ensures that the

first solution found is the optimal one due to its nature of
expanding the least-cost node first. However, UCS can be
modified to continue exploring the search space even after
finding an initial solution to check for other potentially optimal
solutions.

 Although at first glance it might seem that modifying
Uniform Cost Search (UCS) to continue searching after finding
the first solution makes it similar to brute force, there are
significant differences. UCS uses a priority queue to always
expand the least-cost node first, ensuring that the search is
more directed and efficient compared to the exhaustive
enumeration of brute force. This prioritization allows UCS to
systematically reduce the number of nodes it needs to explore,
avoiding paths that are guaranteed to be more expensive than
the current best path. While both methods will eventually
consider all possible solutions, UCS retains its efficiency
advantage by focusing on the most promising paths first. Thus,
even with continued searching, UCS remains more efficient
and targeted than a traditional brute force approach,
highlighting its robustness in finding optimal solutions.

B. Machine Learning

Machine learning is a field of artificial intelligence that

focuses on the development of algorithms and statistical

models that enable computers to perform tasks without

explicit instructions. Instead, these systems learn from data,

identifying patterns and making decisions based on their

learning. The theoretical basis of machine learning

encompasses several core concepts, including:

1. Supervised Learning

This concepts involves training a model on a labeled

dataset, meaning the data includes both input features

and the corresponding target labels. The model learns

to predict the output from the input data. Common

techniques include linear regression, logistic

regression, support vector machines, and neural

networks.

2. Unsupervised Learning

This concepts involves training a model on data that

does not have labeled responses. The goal is to find

hidden patterns or intrinsic structures within the data.

Techniques include clustering (e.g., k-means,

hierarchical clustering) and dimensionality reduction

(e.g., PCA, t-SNE).

3. Reinforcement Learning

This concepts involves training an agent to make a

sequence of decisions by rewarding desired behaviors.

The agent learns to achieve a goal in an uncertain,

potentially complex environment. Techniques include

Q-learning and policy gradient methods.

4. Semi-Supervised Learning

This concepts combines labeled and unlabeled data to

improve learning accuracy. It leverages a small

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

amount of labeled data to better understand the

structure of the unlabeled data.

Data modeling in machine learning involves creating

structured representations of data to develop predictive models

that can provide valuable insights and make accurate

predictions. The process begins with data preprocessing,

where raw data is cleaned and transformed to make it suitable

for modeling. This includes handling missing values, outliers,

and inconsistencies, normalizing and scaling numerical

features, and encoding categorical variables. The data is then

split into training, validation, and test sets to ensure robust

evaluation of the model’s performance.

Feature selection and engineering are crucial steps that

follow, where the most relevant features are identified and

new features are created to enhance model performance. This

may involve selecting variables that contribute significantly to

the prediction task and creating interaction terms or

polynomial features. Once the features are prepared, the next

step is model selection and training. Various algorithms can be

used depending on the nature of the problem and the data.

Common models include linear regression, decision trees,

random forests, support vector machines, and neural networks.

The chosen model is trained on the training dataset by

adjusting its parameters to minimize prediction errors.

C. Hyperparameter Tuning

Hyperparameters are external configurations to a model
that must be set before training begins. Examples include the
learning rate in gradient descent, the number of trees in a
random forest, and the maximum depth of a decision tree. The
choice of hyperparameters can affect the model’s convergence
speed, its ability to generalize, and its overall performance.
Proper tuning of these hyperparameters is essential because
they control the complexity and capacity of the model, and
thereby directly influence its predictive power and efficiency.

Several traditional strategies exist for hyperparameter
tuning, each with its own advantages and limitations:

1. Grid Search: This method exhaustively searches
through a manually specified subset of the
hyperparameter space. Although simple and effective,
grid search can be computationally expensive and
time-consuming, especially with large datasets and
complex models.

2. Random Search: Instead of exhaustively searching all
possible combinations, random search samples a fixed
number of hyperparameter configurations from a
defined search space. Research has shown that random
search can be more efficient than grid search, often
finding good hyperparameter configurations more
quickly.

3. Bayesian Optimization: This method uses probabilistic
models to predict the performance of hyperparameters
and select the most promising candidates for
evaluation. It balances exploration and exploitation to
efficiently navigate the hyperparameter space.

4. Evolutionary Algorithms: These are population-based
optimization algorithms inspired by natural selection.
They iteratively evolve a population of candidate
solutions using operations like mutation, crossover,
and selection.

5. Gradient-Based Optimization: Some advanced
techniques use gradient information to optimize
hyperparameters. These methods require differentiable
hyperparameters and can be very efficient for certain
types of models.

Figure 2. Grid search and Random search illustration

(Source : [3])

The performance of different hyperparameter
configurations is typically evaluated using cross-validation on a
validation set. Common metrics include accuracy, precision,
recall, F1 score, and mean squared error, depending on the type
of problem (classification or regression). The chosen metric
guides the search process, helping to identify the best
hyperparameter set.

III. IMPLEMENTATION

In this section, we will outline the process of preparing the
scenario for our testing. We will begin by discussing the steps
involved in cleaning and engineering the dataset to ensure it is
suitable for hyperparameter tuning. Following this, we will
delve into the implementation of Uniform Cost Search (UCS)
for finding optimal hyperparameter configurations. Finally, we
will compare the performance of UCS with
RandomizedSearchCV to evaluate its effectiveness in
hyperparameter optimization.

A. Limitations

In terms of limitations, there are several considerations to

take into account regarding this research and its

implementation. Firstly, accuracy might vary across test cases

due to the use of the random shuffle splitting method, which

can introduce variability in the results. Additionally, while the

UCS method aims to find the set of parameters that yields the

highest accuracy, tuning does not always guarantee better

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

results than using untuned parameters, as overtuning can

occur. This research focuses on demonstrating that among

various tuning methods, UCS can identify the highest

accuracy configuration.

Furthermore, only basic cleaning and preprocessing were

applied to the data, which might have limited the achievable

accuracy. Additional preprocessing steps and gaining deeper

insights into the data could further enhance accuracy. Finally,

while the UCS method accepts a range of variables and

parameter values, the broader the range and the more variables

included, the longer the search process will take. This

research's implementation aims not only to find a complete

parameter set but also to identify the optimal one, which can

be time-consuming.

B. Dataset

The dataset used in this study contains detailed information
on hotel bookings, comprising 94,546 rows and 30 columns. It
provides a comprehensive overview of each booking, including
the booking ID, average daily rate, number of adults, children,
and babies, arrival details (day, month, week number, and
year), room type assigned and reserved, booking changes, and
customer type. Additionally, it includes data on waiting list
duration, deposit type, distribution channel, country of origin,
previous cancellations, parking space requirements, and the
final reservation status. The purpose of this dataset is to
provide information to determine whether a user has checked
out or canceled their reservation.

Figure 3. Snippet of Dataset

(Source : Code written by the author)

C. Data Preparation

The first step of the preprocessing involves splitting the

data into a training set and a validation set. The training set is

used for model training, allowing the algorithm to learn from

the data, while the validation set is reserved for evaluation,

enabling the assessment of the model's performance on unseen

data.

Figure 4. Snippet of data shuffle splitter

(Source : Code written by the author)

Before moving to the pipeline, the dataset is cleaned of

null and empty values to ensure data quality and consistency.

However, the 'agents' and 'country' columns are retained

despite containing a significant number of NaN values, as

removing them at this stage would substantially reduce the

size of the training data. These columns will be handled later

in the pipeline, where rows containing NaN values in 'agents'

and 'country' will be imputed altogether to ensure the integrity

of the final dataset.

Figure 5. Snippet of Data cleaning function

(Source : Code written by the author)

Figure 6. Snippet of data pipeline

(Source : Code written by the author)

No outlier cleaning was performed in this study due to the

imbalanced and varied nature of the data, which could lead to

excessive deletion when attempting to remove outliers. To

maintain accuracy, it was decided to retain the outliers and

address them by scaling later in the data processing pipeline.

This approach ensures that valuable data points are not

discarded, while still managing their impact on the model’s

performance through subsequent scaling techniques.

After clearing the trainset of the NaN values, a pipeline is

constructed to process the data further. The pipeline includes

several steps:

1. FeatureImputer

This step handles missing values in the dataset. The

fills in or replaces missing data points, ensuring that

the dataset is complete and can be used for training

without issues related to incomplete data.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 7. Snippet of FeatureImputer

(Source : Code written by the author)

2. FeatureScaler

The steps standardizes the range of independent

variables or features of data, which is crucial for many

machine learning algorithms that are sensitive to the

scale of data.

Figure 8. Snippet of FeatureScaler

(Source : Code written by the author)

3. FeatureDropper

This step removes columns that are not useful for the

model training process, such as columns with too

many missing values or irrelevant information.

Figure 9. Snippet of FeatureDropper

(Source : Code written by the author)

4. FeatureEncoder.

This step encodes categorical variables. It transforms

categorical features into a format that can be provided

to the machine learning algorithm to do a better job in

prediction.

Figure 10. Snippet of FeatureEncoder

(Source : Code written by the author)

D. Data Modelling

After preprocessing the data to ensure it is suitable for

modeling, the modeling process is divided into four distinct

scenarios, all utilizing the XGBoost model. This approach

allows for a comprehensive evaluation of different

hyperparameter tuning methods on model performance.

The first scenario involves using XGBoost with its default

hyperparameters. This serves as a baseline model to

understand the performance of XGBoost without any

hyperparameter optimization. By evaluating the model in its

default state, we can establish a reference point for

comparison with the other tuned models. This baseline helps

to highlight the impact of hyperparameter tuning on model

performance.

Figure 11. Snippet of pure XGBoost prediction

(Source : Code written by the author)

In the second scenario, XGBoost is employed with

hyperparameters optimized using Uniform Cost Search (UCS).

UCS is a best-first search algorithm that systematically

explores the hyperparameter space by prioritizing

configurations based on their potential to improve model

performance. By assigning costs inversely related to predicted

accuracy, UCS effectively identifies promising

hyperparameter settings. This scenario aims to demonstrate

the efficiency and effectiveness of UCS in navigating the

hyperparameter space to find configurations that enhance

model accuracy.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 12. Snippet of UCS generated parameters and its

XGBoost prediction

(Source : Code written by the author)

The algorithm begins by initializing an empty set for the

best parameters (best_params) and setting the best score

(best_score) to zero. It also initializes a priority queue to

manage the exploration of parameter sets, where each item in

the queue is a tuple containing the cost, a unique identifier, the

current set of parameters, and the list of remaining parameter

keys to explore.

The algorithm enters a loop that continues until the queue

is empty. In each iteration, it dequeues the parameter set with

the lowest cost (highest accuracy). If there are no more

parameters to explore (remaining_keys is empty), it compares

the current score (negative of the cost) with the best score

found so far. If the current score is higher, it updates the best

parameters and best score.

If there are still parameters to explore, the algorithm takes

the next parameter key from the list (next_key) and iterates

over all possible values for this key. For each value, it creates

a new parameter set (new_params) by copying the current

parameters and adding the new value for the key. It then

evaluates this new parameter set using the evaluate_params

function, which performs cross-validation to obtain an

accuracy score.

The new parameter set, along with its cost (negative

accuracy score), unique identifier, and remaining keys to

explore, is then added to the priority queue. The process

continues until all possible parameter sets have been explored,

and the queue is empty. The best set of parameters found

during the search is returned.

The UCS method initially finds the first complete set of

parameters with the lowest cost and prints it out. However, it

does not stop there; another modification ensures that it

continues its exhaustive search while still applying the UCS

concept, starting from other nodes. Every time a new node

yields better results, it prints a statement indicating a change

from the initial node path. This approach ensures that UCS

applies both concepts: stopping at the first found parameters if

time efficiency is preferred, or continuing to exhaustively

search for optimal parameters if better performance is desired.

This makes comparison with RandomizedSearchCV and

GridSearchCV viable, as UCS can be evaluated for both time

efficiency and optimality.

The third scenario applies XGBoost with hyperparameters

determined through RandomizedSearchCV (a sklearn model

selection library). RandomizedSearchCV randomly samples a

specified number of hyperparameter combinations from the

defined parameter space and evaluates them. This approach

can often find good hyperparameters more quickly than

exhaustive grid search, making it a popular choice for

hyperparameter tuning.

Figure 13. Snippet of XGBoost prediction using

RandomizedSearchCV parameters

(Source : Code written by the author)

The fourth scenario applies XGBoost with hyperparameters

determined through GridSearchCV, a model selection library

from scikit-learn. GridSearchCV performs an exhaustive

search over a specified parameter grid, evaluating all possible

combinations of the provided hyperparameters. This approach

systematically explores the entire parameter space to identify

the best combination of hyperparameters that maximizes

model performance.

Figure 14. Snippet of XGBoost prediction using

GridSearchCV parameters

(Source : Code written by the author)

The purpose of the third and fourth scenarios is to evaluate

whether UCS is effective for hyperparameter tuning. The third

scenario uses RandomizedSearchCV, which prioritizes time

efficiency by sampling a specified number of hyperparameter

combinations. Therefore, UCS, with its longer search time,

should at least achieve the same or better results as

RandomizedSearchCV. The fourth scenario employs

GridSearchCV, which performs an exhaustive search to find

the optimal parameters. Hence, UCS should yield results that

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

are at least as good as, or very close to, those obtained by

GridSearchCV. Meeting these benchmarks would demonstrate

that UCS is a viable and effective method for hyperparameter

tuning.

IV. TESTING AND ANALYSIS

The model-ready dataset was then passed through three

different scenarios. In this test case, the parameters used were

based on the features of XGBoost, which included the

following parameter grid: 'n_estimators' with values [50, 100,

150], 'max_depth' with values [3, 6, 9], 'learning_rate' with

values [0.01, 0.1, 0.2], 'subsample' with values [0.7, 0.8, 1.0],

and 'colsample_bytree' with values [0.7, 0.8, 0.9, 1.0].

Figure 15. Snippet of parameters used as test cases

(Source : Code written by the author)

The choice of model may vary according to its intended

usage, as different models have distinct parameters and

requirements. It's important to remember that each model type

comes with its own set of parameters that need to be optimized

to achieve the best performance. In this test case, XGBoost is

used as the model due to its ability to handle large datasets

efficiently, its robustness in managing both regression and

classification tasks, and its superior performance through

gradient boosting techniques. XGBoost's regularization

capabilities also help prevent overfitting, making it an ideal

choice for achieving high accuracy and reliability in

predictions.

The results of the three scenarios are then compared and
evaluated together to gain additional insights and determine
whether the search for the optimal parameters is returns a
desirable results.

 In this test case, with a dataset split of 60% for training and
40% for testing, and using the XGBoost model without
hyperparameter tuning, the resulting accuracy is 0.8229.

Figure 16. Snippet of accuracy result using pure XGBoost

(Source : Code written by the author)

 This shows a satisfactory result, as accuracy ranges from
70% to 90% are considered optimal when evaluating a model.

However, another attempt will be made to further increase the
accuracy by applying different sets of parameters.

Figure 17. Snippet of accuracy result using XGBoost and

UCS generated parameters

(Source : Code written by the author)

 When evaluating the model using UCS, the search process
took approximately 14 minutes. Despite the longer search time,
it resulted in a better accuracy score of 0.8282. During the
search, the model evaluated one parameter sets before
identifying the final set as the best one. The evaluation was
performed using cross-validation scores, and once the optimal
parameters were found, they were used to predict accuracy on
the test set.

 As shown above, the print statement is triggered whenever
a better score is found, indicating that the UCS method has
identified a new node that yields improved results. This
demonstrates the effectiveness of UCS in continually refining
the search for the optimal parameters by prioritizing nodes with
higher potential.

 Had the problem been solely to find the first solution
while maintaining its optimality, the UCS code could be
adjusted to stop after returning the first complete set of
parameters and it will have a much shorter search time while
still maintaining its high accuracy (Figure 17 shows it stands
slightly below the best value). This initial set would be
considered a good solution within the scope of the explored
branches, even if it does not encompass the entire parameter
set. This adjustment would allow for faster results while still
ensuring the parameters are effective, though they might not be
the absolute best across the whole parameter space. However,
to be able to compete with traditional strategies, it is necessary
to enhance its optimality to the fullest, even if it means
increasing the search time.

 Compared to the previous accuracy, we can conclude that
UCS indeed returns parameters that boost the accuracy of the
model. To test whether this improvement represents the upper
bound (the best result within the params range provided) , we
will now compare it with the results from Randomized Cross-
Validation (RandomizedCV). RandomizedCV is known to
yield diverse results due to its stochastic nature, potentially
identifying different optimal parameters that could further
enhance accuracy.

Figure 18. Snippet of accuracy result using XGBoost and

RandomizedCV parameters

(Source : Code written by the author)

 The RandomizedCV returned an accuracy value of 0.8259,
which is higher than the untuned model but lower than the
accuracy achieved by the UCS method. It is important to note
that RandomizedCV focuses on balancing between time and
results, indicating that our UCS method has proven to be
effective in determining the optimal parameters for achieving
the best results.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 19. Snippet of accuracy result using XGBoost and

GridSearchCV parameters

(Source : Code written by the author)

 The results above show that the accuracy and preferred
parameters obtained using GridSearchCV are equal to those
achieved with our UCS method. Since GridSearchCV employs
an exhaustive approach to find the best solution, this parity in
results demonstrates that our UCS method works effectively. It
is important to note, however, that GridSearchCV might be
faster due to its implementation as a library, which benefits
from optimization techniques such as parallel processing.
These built-in optimizations enable GridSearchCV to
efficiently handle exhaustive searches, further validating the
robustness and efficiency of our UCS approach in comparison.

 The UCS method might provide better results than
RandomizedCV because it focuses more on finding the optimal
result rather than minimizing the time required. However, it
still falls short compared to GridSearchCV, which, despite
being an exhaustive search method, has its own optimization
techniques. The purpose of demonstrating that the UCS method
works is evident in how the program consistently selects nodes
with higher priority, ensuring a thorough search for the best
parameters. This approach has paid off, as shown by UCS
outperforming RandomizedCV in terms of accuracy and have
matching parameters and accuracy with GridSearchCV.

V. CONCLUSION

A key way to increase model accuracy is through

hyperparameter tuning. Traditional methods of

hyperparameter tuning include RandomizedCV and

GridSearchCV, among others. However, in this research, the

author challenged himself to apply the UCS method to find the

best and most optimal parameters. This approach aims to test

if the UCS method could be used as an effective way to

provide optimal results, leveraging its systematic and

prioritized search capabilities as an alternative to conventional

hyperparameter tuning techniques.

Uniform Cost Search (UCS) is conceptually advantageous

due to its flexibility. It can maintain its true UCS nature by

stopping at the first iteration once an optimal solution is found,

ensuring efficiency while still achieving good results.

Alternatively, it can compete with traditional exhaustive

methods by continuing the search to explore additional

solutions, all while maintaining a cost-minimization approach.

This dual capability allows UCS to either prioritize speed or

thoroughness, making it a robust and adaptable method for

finding the best parameters.

Based on testing and analysis, the UCS method has proven

its effectiveness in finding the best parameters for

hyperparameter tuning. This is evidenced by its ability to yield

better results while maintaining its behavior of printing every

time it finds nodes with better accuracy, ultimately achieving a

higher score than RandomizedCV. Although UCS may seem

inefficient compared to built-in traditional selection libraries

like GridSearchCV, this paper demonstrates the fundamental

concept of applying UCS as a method for identifying optimal

parameters. With further optimization, UCS could potentially

yield excellent results in a more efficient timeframe.

VI. APPENDIX

https://github.com/Razark-

Y/UCS_Approach_For_Hyperparameter_Tuning

VIDEO LINK AT YOUTUBE

https://www.youtube.com/watch?v=DzqWGiAI670

ACKNOWLEDGMENT

The author wishes to extend heartfelt gratitude to the

following individuals:

1. The Author's Parents: The constant support,

encouragement, and belief in the author's abilities from

their parents have been invaluable. Their unwavering

presence and motivation have driven the completion of

this work.

2. Dr. Ir. Rinaldi Munir, M.T., Dr. Ir. Rila Mandala, and

Dr. Nur Ulfa Maulidevi: The author expresses deep

appreciation for these esteemed professors of the IF2211

Algorithm Strategies course for their guidance and

knowledge imparted during the lectures

3. Friends and peers: for their support and contributions

in the drafting and refining of this paper.

Finally, the author extends thanks to the readers. Apologies

are offered for any errors in writing or content. The author

sincerely hopes that this paper will be beneficial to its readers.

REFERENCES

[1] R. Munir, "Penentuan rute (Route/Path Planning) - Bagian 1," [Online].
Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian1-2021.pdf [Accessed 12 July 2024]

[2] G.Aurelien, “Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow” [Online].

Available:

https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-
Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-
Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-
Systems-OReilly-Media-2019.pdf [Accessed 11 July 2024]

[3] S.Pandian, “A Comprehensive Guide on Hyperparameter Tuning and its
Techniques” [Online]

Available:

https://www.analyticsvidhya.com/blog/2022/02/a-comprehensive-guide-
on-hyperparameter-tuning-and-its-techniques/ [Accessed 12 July 2024]

[4] S.Sryheni, “Obtaining the Path in the Uniform Cost Search Algorithm”
[Online]

Available:

https://www.baeldung.com/cs/find-path-uniform-cost-search [Accessed
12 July 2024]

[5] B.Priya,” Hyperparameter Tuning: GridSearchCV and
RandomizedSearchCV, Explained” [Online]

Available:

https://github.com/Razark-Y/UCS_Approach_For_Hyperparameter_Tuning
https://github.com/Razark-Y/UCS_Approach_For_Hyperparameter_Tuning
https://www.youtube.com/watch?v=DzqWGiAI670
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian1-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian1-2021.pdf
https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-OReilly-Media-2019.pdf
https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-OReilly-Media-2019.pdf
https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-OReilly-Media-2019.pdf
https://powerunit-ju.com/wp-content/uploads/2021/04/Aurelien-Geron-Hands-On-Machine-Learning-with-Scikit-Learn-Keras-and-Tensorflow_-Concepts-Tools-and-Techniques-to-Build-Intelligent-Systems-OReilly-Media-2019.pdf
https://www.analyticsvidhya.com/blog/2022/02/a-comprehensive-guide-on-hyperparameter-tuning-and-its-techniques/
https://www.analyticsvidhya.com/blog/2022/02/a-comprehensive-guide-on-hyperparameter-tuning-and-its-techniques/
https://www.baeldung.com/cs/find-path-uniform-cost-search

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

https://www.kdnuggets.com/hyperparameter-tuning-gridsearchcv-and-
randomizedsearchcv-explained [Accessed 12 July 2024]

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Wilson Yusda (13522019)

https://www.kdnuggets.com/hyperparameter-tuning-gridsearchcv-and-randomizedsearchcv-explained
https://www.kdnuggets.com/hyperparameter-tuning-gridsearchcv-and-randomizedsearchcv-explained

